Algorithmic Complexity - II

Atul Gupta

Algorithmic Complexity

- A measure of the performance of an algorithm with respect to input size
- Space complexity
- Time complexity (Mostly used)
- Expressed in terms of Asymptotic Notations
- Bog-Oh (O), Big-Theta (Θ), Big-Omega (Ω)
- What to measure
- Worst case performance
- Average case
- Best case

Big-Oh (O)

- An indicator of the worst case performance (upper bound)
- Defined as a function $T(n)$ which is said to be of $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist positive constants C_{0} and n_{0} such that for all $n>=n_{0}$, we have

$$
T(n)<=c_{0} g(n)
$$

- $T(n)$ is asymptotically smaller than or equal to $g(n)$

Big-Oh (O): Examples

- $T(n)=3 n^{2}+4 n=O\left(n^{2}\right)$
- $T(n)=3 n^{2}+4 n=O\left(n^{3}\right)$
- $T(n)=3 n^{2}+4 n \neq O(n)$
- $T(n)=(n+1)^{2}=O\left(n^{2}\right)$

Big-Omega (Ω)

- An indicator of the best case performance (lower bound)
- Defined as a function T(n) which is said to be of $\Omega(\mathrm{g}(\mathrm{n}))$ if there exist positive constants c_{0} and n_{0} such that for all $n>=n_{0}$, we have $\mathrm{T}(\mathrm{n})>=\mathrm{c}_{0} \mathrm{~g}(\mathrm{n})$
- $T(n)$ is asymptotically greater than or equal to $g(n)$

Big-Omega (Ω): Examples

- $T(n)=3 n^{2}+4 n=\Omega\left(n^{2}\right)$
- $T(n)=3 n^{2}+4 n=\Omega(n)$
- $T n=4 n+2=\Omega(n)$
- $T n=4 n+2=\Omega(1)$

Big-Theta (Θ)

- An indicator of the worse case and best case performance (asymptotically tight bound)
- Defined as a function $T(n)$ which is said to be of $\Theta(g(n))$ if there exist positive constants $\mathrm{c}_{1}, \mathrm{c}_{2}$ and n_{0} such that for all $\mathrm{n}>=\mathrm{n}_{0}$, we have

$$
c_{1} g(n)<=T(n)<=c_{2} g(n)
$$

- $T(n)$ is asymptotically equal to $\mathrm{g}(\mathrm{n})$

$\mathrm{T}(\mathrm{n})<=\mathrm{c}_{0} \mathrm{~g}(\mathrm{n})$

Big-Theta (Θ): Examples

- $T(n)=3 n^{2}+4 n=\Theta\left(n^{2}\right)$
- $T(n)=3 n^{2}+4 n \neq \Theta(n)$
- $T n=4 n+2=\Theta(n)$
- $T n=4 n+2 \neq \Theta(1)$

"Divide and Conquer"

- Divide the problem into a number of subproblems.
- Conquer the subproblems by solving them recursively.
- If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- Combine the solutions to the subproblems into the solution for the original problem.

Recursive Algorithms

- Recurrence (or Recurrence Equation)
$T(n)= \begin{cases}\Theta(1) & \text { if } n<=c \\ a T(n / b)+D(n)+C(n) & \text { otherwise }\end{cases}$
- Parts
- Solution for smallest subdivision (Terminating condition)
- Subdivision relation (aT(n/b))
- Division efforts (D(n))
- Combining effort (C(n))

Merge Sort

- Recurrence Relation

Solving Recurrence

- Substitution Method
- Recursion-tree Method
- Master Method

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

2. If $f(n)=\Theta\left(n^{\log a}\right)$, then $T(n)=\Theta\left(n^{\log \alpha} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\left.l_{0,0+1}^{a+1}\right)}\right.$ for some constant $\square>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<$ 1 and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Master Theorem

Examples:

1. $T(n)=9 T(n / 3)+n$
2. $T(n)=T(2 n / 3)+1$
3. $T(n)=3 T(n / 4)+n \log n$

Summary

- Recursion is a tool for solve problems using "Divide and Conquer" approach
- Time complexity of a recursive algorithm can be represented by a recurrence relation
- The recurrence relation can be solved by
- Recursion Tree Method
- Substitution
- Master Theorem

