
ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

1

Algorithmic Complexity - I

Atul GuptaAtul Gupta

ES103: Course Summary

• Estimating algorithmic complexities

• Tools like Recursion, Iteration

• ADT

– Linear data organizations like Arrays, Stacks, queues,

Linked lists

– Non-linear data organizations like hashing, trees (and its

many variances), graphs (and many variances)

– Examples

• Standard Problems: Searching and Sorting

• Standard Problem Solving Approaches

• Estimating algorithmic complexities

• Tools like Recursion, Iteration

• ADT

– Linear data organizations like Arrays, Stacks, queues,

Linked lists

– Non-linear data organizations like hashing, trees (and its

many variances), graphs (and many variances)

– Examples

• Standard Problems: Searching and Sorting

• Standard Problem Solving Approaches

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

2

Algorithm

“An algorithm is a sequence of computational
steps that transform the input into the
output”

An Example: Sorting Problem

Input: A sequence of n numbers a1 , a2 , ..., an

Output: Output: A permutation (reordering) {a1’ , a2’ , ..., an’}

of the input sequence such that a1’ <= a2’ <= , ..., <=an’

Algorithms as a tool

• What kinds of problems are solved by
Algorithms?

– Internet

– Operating Systems

– Machine Learning

– Design and Manufacturing

– E-Commerce

– Workflows

– …

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

3

Algorithm

• Can be expressed in many kind of notations,

like

– Natural languages,

– Pseudocode,

– Flowcharts,

– Programming Languages

Search

4 2 9 5 3

x

Example: Searching Problem

Input: A sequence of n numbers a1 , a2 , ..., an and an

element x to be search

Output: Output: return the index of the element x if present,

else, return ‘not found’

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

4

Sequential Search – C Code
int sequentialSearch(int c[], int s_element){

int i;

int array_ size = size_of_array(c);

for (i=0; I < array_size and s_element != c[i]; i++);

if (i == array_size)

return -1;

else

return i;

}

int sequentialSearch(int c[], int s_element){

int i;

int array_ size = size_of_array(c);

for (i=0; I < array_size; i++){

if (s_element = c[i])

break;

}

if (i == array_size)

return -1;

else

return i;

}

Sequential Search – C Code

int sequentialSearch(int c[], int s_element){

int i;

int array_ size = size_of_array(c);

for (i=0; I < array_size and s_element != c[i]; i++);

if (i == array_size)

return -1;

else

return i;

}

int sequentialSearch(x, A)
int i;
for (i=0; i < length[A] and x <> A[i]; i++);

if (i == length[A])
return (-1)

else
return (i)Algorithm

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

5

Sequential Search – Analysis

int sequentialSearch(x, A)

int i;

for (i=0; i < length[A]; i++) {

if x == A[i]

then break;

}

if (i == length[A])

return (-1)

else

return (i)

1

1

1 – length[A]

0 - length[A]

1

1

1

1

1

Best Case : when x is the first element (No of comparisons = 1) : O(1)

Worst Case : when x is absent (No of comparisons = n) : O(n)

Average Case : : = O(n)

2

)1(1

1

+
=∑

=

n
i

n

n

i

Binary Search

BinarySearch(x, A)
left = 0;
right = length(A) – 1;
while (left <= right) {

mid = (left + right) / 2
if (A[mid] == x)

return mid;
else if (A[mid] > value)

right = mid - 1
else

left = mid + 1
}
return -1 // not found

mid

Best Case : when x is mid element (No of comparisons = 1) : O(1)

Worst Case : when x is absent (No of comparisons = n) : O(log n)

Average Case : O(log n)

1 2 4 5 7 8 9

left right

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

6

Comparing Performance

y = x

Comparing Performance

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

7

Finding Minimum of a Collection

int findMin(int[] x) {

int k = 0; int n = x.length;

for (int i = 1; i < n; i++) {

if (x[i] < x[k]) {

k = i;

}

}

return k;

}

Time Space

n

1+1

n

1

1

1

n+3 n+2

O(n) O(n)

C Code for Binary Search

int Bin-Search(){
first = 0;

last = n - 1;

middle = (first+last)/2;

while(first <= last)

{

if (array[middle] < search)

first = middle + 1;

else if (array[middle] == search)

{

printf("%d found at location %d.\n", search, middle+1);

break;

}

else

last = middle - 1;

middle = (first + last)/2;

}

if (first > last)

printf("Not found! %d is not present in the list.\n", search);

return 0;

}

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

8

How good is your program?

• Sequence of computational steps

• Efficient

– Speed (Time)

– Space (Memory)

• Evaluation of “Goodness” should be
independent of

– Language

– Processor

• Algorithmic Evaluation

• Running Time

– Types of operations

– H/W

– Compiler

– Inputs

• Number of Basic
Operations

– Different types

– Inputs and size

– Complex

scanf(“%d”, &x);scanf(“%d”, &x);
if (x < 10)

x++;
else

for (i =0, i<10, i++);

How good is your program?

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

9

• Running time as a function of input size

– Input type and size is known

– Compute number of times each statement is going

to be executed (expressed in terms of input size)

– Replace operation times with constants

• Different operations take different (but constant) time

– Compute

T (n) = Σ time taken by ith statement

How good is your program?

An Example: Insertion Sort

Sequence is 4, 2, 9, 7, 8, 3, 5

4 42 9 97 98 98743 9

The figure is taken from the Book by Cormen et. al. – Introduction to Algorithms

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

10

Algorithm: Insertion sort

void insertion-sort(A)
1 for (i � 2; i < length[A]; i++) {

2 key � A[i];

//Insert A[j] into the sorted sequence A[1] to A[j - 1].

3 j� i – 1;

4 while (j > 0 and A[j] > key) {

5 A[j + 1] � A[j];

6 j � j – 1;

}

7 A[j + 1] � key;

}

Insertion sort: Time Taken

S. No. Steps cost times

1 for (i� 2; i< length[A]; i++) c1 n-1

2 key � A[i]; c2 n-1

//Insert A[j] into the sorted sequence A[1] to A[j - 1].

3 j � i - 1 c3 n-1

4 while (j > 0 and A[j] > key) c4 ∑j=2
n tj

5 A[j + 1] � A[j]; c5 ∑j=2
n (tj-1)

6 j � j– 1; c6 ∑j=2
n (tj-1)

7 A[j + 1] � key c7 n-1

T(n) = c1(n-1)+ c2(n-1)+ c3(n-1) + c4 ∑j=2
n tj

+ c5 ∑j=2
n(tj-1) + c6 ∑j=2

n(tj-1) + c7(n-1)

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

11

Insertion Sort: Time Taken

• Best Case

• Worse Case

• Average Case

Why Worse Case?

• Act as the “Upper Bound”

• Worse case do occur in practice

– Ex: a record not found in the database

• Average case is often (roughly) as bad as the

worse case

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

12

Algorithmic Complexity

• A measure of the performance of an algorithm
with respect to input size
– Space complexity

– Time complexity (Mostly used)

• Expressed in terms of Asymptotic Notations
– Bog-Oh (O), Big-Theta (Θ), Big-Omega (Ω)

• What to measure
– Worst case performance

– Average case

– Best case

Big-Oh (O)

• An indicator of the worst

case performance (upper

bound)

• Defined as a function T(n)

which is said to be of O(g(n))

if there exist positive

constants c0 and n0 such that

for all n >= n0, we have

T(n) < = c0 g(n)

• T(n) is asymptotically smaller

than or equal to g(n)

n0

cg(n)

T(n)

T(n) <= c0 g(n)

nn0

cg(n)

T(n)

T(n) <= c0 g(n)

n

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

13

Big-Oh (O): Examples

• T(n) = 3n2+4n = O(n2)

• T(n) = 3n2+4n = O(n3)

• T(n) = 3n2+4n ≠ O(n)

• T(n) = (n+1)2 = O (n2)

Big-Omega (ΩΩ)

• An indicator of the best case

performance (lower bound)

• Defined as a function T(n)

which is said to be of ΩΩ(g(n))

if there exist positive

constants c0 and n0 such that

for all n >= n0, we have

T(n) > = c0 g(n)

• T(n) is asymptotically

greater than or equal to g(n) n0

c0g(n)

T(n)

T(n) >= c0 g(n)

n

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

14

Big-Omega (ΩΩ): Examples

• T(n) = 3n2+4n = ΩΩ(n2)

• T(n) = 3n2+4n = ΩΩ(n)

• Tn = 4n+2 = ΩΩ(n)(n)

• Tn = 4n+2 = ΩΩ(1)(1)

Big-Theta (ΘΘ)

• An indicator of the worse
case and best case
performance (asymptotically
tight bound)

• Defined as a function T(n)
which is said to be of ΘΘ (g(n))
if there exist positive
constants c1, c2 and n0 such
that for all n >= n0, we have

c1 g(n) <= T(n) <= c2 g(n)

• T(n) is asymptotically equal
to g(n)

n0

c2g(n)

T(n)

T(n) <= c0 g(n)

nn0

T(n)

T(n) <= c0 g(n)

n

c1g(n)

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

15

Big-Theta (ΘΘ): Examples

• T(n) = 3n2+4n = ΘΘ(n2)

• T(n) = 3n2+4n ≠ ΘΘ(n)

• Tn = 4n+2 = ΘΘ(n)(n)

• Tn = 4n+2 ≠ ΘΘ(1)(1)

Order of Growth

Analysis

Type

Mathematical

Expression

Relative Rates of

Growth

Big O T(N) = O(F(N)) T(N) < F(N)

Big Ω T(N) = Ω(F(N)) T(N) > F(N)

Big θ T(N) = θ(F(N)) T(N) = F(N)

nnnnnnn
n !2loglog1 32 <<<<<<<

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

16

Name Convention

• O(1) Constant

• O(logc n) Logarithmic (same order ∀c)

• O(logc n) Polylogarithmic

• O(n) Linear

• O(nc) Polynomial

• O(cn), c>1 Exponential

• O(n!) Factorial

32

T(n)

n n n log n n
2

n
3

n
4

n
10

2
n

10 .01µs .03µs .1µs 1µs 10µs 1s 1µs

20 .02µs .09µs .4µs 8µs 160µs 2.84h 1ms

30 .03µs .15µs .9µs 27µs 810µs 6.83d 1s

40 .04µs .21µs 1.6µs 64µs 2.56ms 121d 18m

50 .05µs .28µs 2.5µs 125µs 6.25ms 3.1y 13d

100 .1µs .66µs 10µs 1ms 100ms 3171y 4×10
13

y

10
3
 1µs 9.96µs 1ms 1s 16.67m 3.17×10

13
y 32×10

283
y

104 10µs 130µs 100ms 16.67m 115.7d 3.17×10
23

y

10
5
 100µs 1.66ms 10s 11.57d 3171y 3.17×10

33
y

10
6
 1ms 19.92ms 16.67m 31.71y 3.17×10

7
y 3.17×10

43
y

Complexity and Tractability Complexity and Tractability

Assume the computer does 1 billion ops per sec.

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

17

33

log n n n log n n
2

n
3

2
n

0 1 0 1 1 2

1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 256

4 16 64 256 4096 65,536

5 32 160 1,024 32,768 4,294,967,296

0

10000

20000

30000

40000

50000

60000

70000

n

1

10

100

1000

10000

100000

n

2n

n2

n log n

n

log n

log n

n

n log n

n2

n3

n3
2n

Time Complexity –

How much it matters?

…
One million number

Computer - A

109 instructions/sec

Insertion sort

(2n2)

Computer - B

107 instructions/sec

Merge sort

50 n log n

2000

Seconds

100

Seconds

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

18

Summary

• Algorithms are omnipresent in computational
domain

• Time complexity of algorithm does matter

• Time complexity of an algorithm is measured as
rate of growth of the running time wrt input size

• Time complexity is normally expressed
– Big-Oh (O) ----- upper bound (most Popular)

– Big-theta (Θ) ----- tight (upper & lower) bound

– Big-omega (Ω) ----- lower bound

• Can you measure time complexity of a given
algorithm?

To-Do

• Do assignment #1

