
©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Lecture 7: Definite Clause Grammars

•  Theory
–  Introduce context free grammars and

some related concepts
–  Introduce definite clause grammars, the

Prolog way of working with context free
grammars (and other grammars too)

•  Exercises
– Exercises of LPN: 7.1, 7.2, 7.3
– Practical work

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Context free grammars

•  Prolog offers a special notation for
defining grammars, namely DCGs or
definite clause grammars

•  So what is a grammar?
•  We will answer this question by

discussing context free grammars
•  CFGs are a very powerful mechanism,

and can handle most syntactic aspects
of natural languages (such as English
or Italian)

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Example of a CFG

s → np vp
np → det n
vp → v np
vp → v
det → the
det → a
n → man
n → woman
v → shoots

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Ingredients of a grammar

•  The → symbol is used to
define the rules

•  The symbols s, np, vp,
det, n, v are called the
non-terminal symbols

•  The symbols in italics are
the terminal symbols:
 the, a, man,
 woman, shoots

s → np vp
np → det n
vp → v np
vp → v
det → the
det → a
n → man
n → woman
v → shoots

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

A little bit of linguistics

•  The non-terminal symbols in this
grammar have a traditional meaning in
linguistics:
– np: noun phrase
– vp: verb phrase
– det: determiner
– n: noun
– v: verb
– s: sentence

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

More linguistics

•  In a linguistic grammar, the non-
terminal symbols usually correspond to
grammatical categories

•  In a linguistic grammar, the terminal
symbols are called the lexical items, or
simply words (a computer scientist
might call them the alphabet)

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Context free rules

•  The grammar contains
nine context free rules

•  A context free rule consists of:
–  A single non-terminal symbol
–  followed by →
–  followed by a finite sequence of

terminal or non-terminal symbols

s → np vp
np → det n
vp → v np
vp → v
det → the
det → a
n → man
n → woman
v → shoots

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Grammar coverage

•  Consider the following string:

the woman shoots a man

•  Is this string grammatical according to
our grammar?

•  And if it is, what syntactic structure
does it have?

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Syntactic structure

 s

 vp

 np np

 det n v det n

 the woman shoots a man

s → np vp
np → det n
vp → v np
vp → v
det → the
det → a
n → man
n → woman
v → shoots

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Parse trees

•  Trees representing the syntactic
structure of a string are often called
parse trees

•  Parse trees are important:
– They give us information about the string
– They give us information about structure

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Grammatical strings

•  If we are given a string of words, and a
grammar, and it turns out we can build a
parse tree, then we say that the string is
grammatical (with respect to the given
grammar)
–  E.g., the man shoots is grammatical

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Grammatical strings

•  If we are given a string of words, and a
grammar, and it turns out we can build a
parse tree, then we say that the string is
grammatical (with respect to the given
grammar)
–  E.g., the man shoots is grammatical

•  If we cannot build a parse tree, the given
string is ungrammatical (with respect to the
given grammar)
–  E.g., a shoots woman is ungrammatical

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Generated language

•  The language generated by a
grammar consists of all the strings that
the grammar classifies as grammatical

 For instance

 a woman shoots a man
 a man shoots

 belong to the language generated by
our little grammar

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Recogniser

•  A context free recogniser is a program
which correctly tells us whether or not a
string belongs to the language
generated by a context free grammar

•  To put it another way, a recogniser is
a program that correctly classifies
strings as grammatical or
ungrammatical

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Information about structure

•  But both in linguistics and computer
science, we are not merely interested in
whether a string is grammatical or not

•  We also want to know why it is
grammatical: we want to know what its
structure is

•  The parse tree gives us this structure

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Parser

•  A context free parser correctly decides
whether a string belongs to the
language generated by a context free
grammar

•  And it also tells us what its structure is
•  To sum up:

– A recogniser just says yes or no
– A parser also gives us a parse tree

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Context free language

•  We know what a context free grammar is, but
what is a context free language?

•  Simply: a context free language is a
language that can be generated by a context
free grammar

•  Some human languages are context free,
some others are not
–  English and Italian are probably context free
–  Dutch and Swiss-German are not context free

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Theory vs. Practice

•  So far the theory, but how do we work
with context free grammars in Prolog?

•  Suppose we are given a context free
grammar
– How can we write a recogniser for it?
– How can we write a parser for it?

•  In this lecture we will look at how to
define a recogniser

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

CFG recognition in Prolog

•  We shall use lists to represent a
sequence of tokens
 [a,woman,shoots,a,man]

•  The rule s → np vp can be
thought as concatenating an np-list
with a vp-list resulting in an s-list

•  We know how to concatenate lists in
Prolog: using append/3

•  So let's turn this idea into Prolog

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

CFG recognition using append/3

s(C):- np(A), vp(B), append(A,B,C).
np(C):- det(A), n(B), append(A,B,C).
vp(C):- v(A), np(B), append(A,B,C).
vp(C):- v(C).
det([the]). det([a]).
n([man]). n([woman]). v([shoots]).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

CFG recognition using append/3

?- s([the,woman,shoots,a,man]).
yes
?-

s(C):- np(A), vp(B), append(A,B,C).
np(C):- det(A), n(B), append(A,B,C).
vp(C):- v(A), np(B), append(A,B,C).
vp(C):- v(C).
det([the]). det([a]).
n([man]). n([woman]). v([shoots]).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

CFG recognition using append/3

?- s(S).
S = [the,man,shoots,the,man];
S = [the,man,shoots,the,woman];
S = [the,woman,shoots,a,man]
…

s(C):- np(A), vp(B), append(A,B,C).
np(C):- det(A), n(B), append(A,B,C).
vp(C):- v(A), np(B), append(A,B,C).
vp(C):- v(C).
det([the]). det([a]).
n([man]). n([woman]). v([shoots]).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

CFG recognition using append/3

?- np([the,woman]).
yes
?- np(X).
X = [the,man];
X = [the,woman]

s(C):- np(A), vp(B), append(A,B,C).
np(C):- det(A), n(B), append(A,B,C).
vp(C):- v(A), np(B), append(A,B,C).
vp(C):- v(C).
det([the]). det([a]).
n([man]). n([woman]). v([shoots]).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Problems with this recogniser

•  It doesn't use the input string to guide
the search

•  Goals such as np(A) and vp(B) are
called with uninstantiated variables

•  Moving the append/3 goals to the front
is still not very appealing --- this will
only shift the problem --- there will be a
lot of calls to append/3 with
uninstantiated variables

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Difference lists

•  A more efficient implementation can be
obtained by using difference lists

•  This is a sophisticated Prolog technique
for representing and working with lists

•  Examples:
[a,b,c]-[] is the list [a,b,c]
[a,b,c,d]-[d] is the list [a,b,c]
[a,b,c|T]-T is the list [a,b,c]
X-X is the empty list []

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

CFG recognition using difference lists

s(A-C):- np(A-B), vp(B-C).
np(A-C):- det(A-B), n(B-C).
vp(A-C):- v(A-B), np(B-C).
vp(A-C):- v(A-C).
det([the|W]-W). det([a|W]-W).
n([man|W]-W). n([woman|W]-W). v([shoots|W]-W).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

CFG recognition using difference lists

?- s([the,man,shoots,a,man]-[]).
yes
?-

s(A-C):- np(A-B), vp(B-C).
np(A-C):- det(A-B), n(B-C).
vp(A-C):- v(A-B), np(B-C).
vp(A-C):- v(A-C).
det([the|W]-W). det([a|W]-W).
n([man|W]-W). n([woman|W]-W). v([shoots|W]-W).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

How does this work?

•  Are there any tricks involved?
Draw search tree!

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

CFG recognition using difference lists

?- s(X-[]).
S = [the,man,shoots,the,man];
S = [the,man,shoots,a,man];
….

s(A-C):- np(A-B), vp(B-C).
np(A-C):- det(A-B), n(B-C).
vp(A-C):- v(A-B), np(B-C).
vp(A-C):- v(A-C).
det([the|W]-W). det([a|W]-W).
n([man|W]-W). n([woman|W]-W). v([shoots|W]-W).

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Summary so far

•  The recogniser using difference lists is a lot
more efficient than the one using append/3

•  However, it is not that easy to understand
and it is a pain having to keep track of all
those difference list variables

•  It would be nice to have a recogniser as
simple as the first and as efficient as the
second

•  This is possible: using DCGs

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Definite Clause Grammars

•  What are DCGs?
•  Quite simply, a nice notation for writing

grammars that hides the underlying
difference list variables

•  Let us look at three examples

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

DCGs: first example

s --> np, vp.
np --> det, n.
vp --> v, np.
vp --> v.
det --> [the]. det --> [a].
n --> [man]. n --> [woman]. v --> [shoots].

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

DCGs: first example

?- s([a,man,shoots,a,woman],[]).
yes
?-

s --> np, vp.
np --> det, n.
vp --> v, np.
vp --> v.
det --> [the]. det --> [a].
n --> [man]. n --> [woman]. v --> [shoots].

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

DCGs: first example

?- s(X,[]).
S = [the,man,shoots,the,man];
S = [the,man,shoots,a,man];
….

s --> np, vp.
np --> det, n.
vp --> v, np.
vp --> v.
det --> [the]. det --> [a].
n --> [man]. n --> [woman]. v --> [shoots].

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

What is going on?

•  A DCG rule such as:

 s --> np,vp.

is really a syntactic variant of:

 s(A,B):- np(A,C), vp(C,B).

•  DCGs simplify notation!

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

DCGs: second example

•  We added some recursive rules to the grammar…
•  What and how many sentences does this grammar

generate?
•  What does Prolog do with this DCG?

s --> s, conj, s. s --> np, vp.
np --> det, n. vp --> v, np. vp --> v.

det --> [the]. det --> [a].
n --> [man]. n --> [woman]. v --> [shoots].
conj --> [and]. conj --> [or]. conj --> [but].

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

DCG without left-recursive rules

s --> simple_s, conj, s.
s --> simple_s.
simple_s --> np, vp.
np --> det, n.
vp --> v, np.
vp --> v.

det --> [the]. det --> [a].
n --> [man]. n --> [woman]. v --> [shoots].
conj --> [and]. conj --> [or]. conj --> [but].

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

DCGs are not magic!

•  The moral: DCGs are a nice notation,
but you cannot write arbitrary context-
free grammars as a DCG and have it
run without problems

•  DCGs are ordinary Prolog rules in
disguise

•  So keep an eye out for left-recursion!

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

DCGs: third example

•  We will define a DCG for a formal
language

•  A formal language is simply a set of
strings
– Formal languages are objects that

computer scientist and mathematicians
define and study

– Natural languages are languages that
human beings normally use to
communicate

•  We will define the language anbn

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

DCGs: third example

s --> [].
s --> l,s,r.
l --> [a].
r --> [b].

?- s([a,a,a,b,b,b],[]).
yes
?- s([a,a,a,a,b,b,b],[]).
no

•  We will define the formal
 language anbn

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

DCGs: third example

s --> [].
s --> l,s,r.
l --> [a].
r --> [b].

?- s(X,[]).
X = [];
X = [a,b];
X = [a,a,b,b];
X = [a,a,a,b,b,b]
….

•  We will define the formal
 language anbn

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Exercises

•  LPN 7.1
•  LPN 7.2
•  LPN 7.3

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Summary of this lecture

•  We explained the idea of grammars
and context free grammars are

•  We introduced the Prolog technique of
using difference lists

•  We showed that difference lists can be
used to describe grammars

•  Definite Clause Grammars is just a nice
Prolog notation for programming with
difference lists

©
 P

at
ri

ck
 B

la
ck

b
u

rn
,

Jo
h

an
 B

os
 &

 K
ri

st
in

a
S

tr
ie

g
n

it
z

Next lecture

•  More Definite Clause Grammars
– Examine two important capabilities offered

by DCG notation
•  Extra arguments
•  Extra tests

– Discuss the status and limitations of
definite clause grammars

