Lecture 9: A closer look at terms

- Theory
- Introduce the == predicate
- Take a closer look at term structure
- Introduce strings in Prolog
- Introduce operators
- Exercises
- Exercises of LPN: 9.1, 9.2, 9.3, 9.4, 9.5
- Practical session

Comparing terms: ==/2

- Prolog contains an important predicate for comparing terms
- This is the identity predicate ==/2
- The identity predicate ==/2 does not instantiate variables, that is, it behaves differently from =/2

Comparing terms: ==/2

- Prolog contains an important predicate for comparing terms
- This is the identity predicate ==/2
- The identity predicate ==/2 does not instantiate variables, that is, it behaves differently from =/2

Comparing variables

- Two different uninstantiated variables are not identical terms
- Variables instantiated with a term T are identical to T

Comparing variables

- Two different uninstantiated variables are not identical terms
- Variables instantiated with a term T are identical to T

$$
\begin{aligned}
& ?-X==X . \\
& X=_443 \\
& \text { yes } \\
& ?-Y==X . \\
& Y=_442 \\
& X=_443 \\
& \text { no } \\
& ?-a=U, a==U . \\
& U=_443 \\
& \text { yes }
\end{aligned}
$$

Comparing terms: $\==/ \mathbf{2}$

- The predicate $\backslash==/ 2$ is defined so that it succeeds in precisely those cases where ==/2 fails
- In other words, it succeeds whenever two terms are not identical, and fails otherwise

Comparing terms: $\==/ 2$

- The predicate $\backslash==/ 2$ is defined so that it succeeds in precisely those cases where ==/2 fails
- In other words, it succeeds whenever two terms are not identical, and fails otherwise

$$
\begin{aligned}
& ?-\mathrm{a} \backslash==\mathrm{a} . \\
& \text { no } \\
& \text { ?- a } \backslash==\mathrm{b} \text {. } \\
& \text { yes } \\
& \text { ?- a } \backslash==\text { 'a'. } \\
& \text { no } \\
& \begin{array}{l}
\text { ?- a } \backslash==\mathrm{X} \\
X=-443 \\
\text { yes }
\end{array}
\end{aligned}
$$

Terms with a special notation

- Sometimes terms look different, but Prolog regards them as identical
- For example: a and 'a', but there are many other cases
- Why does Prolog do this?
- Because it makes programming more pleasant
- More natural way of coding Prolog programs

Arithmetic terms

- Recall lecture 5 where we introduced arithmetic
- +, -, <, >, etc are functors and expressions such as $2+3$ are actually ordinary complex terms
- The term $2+3$ is identical to the term $+(2,3)$

Arithmetic terms

- Recall lecture 5 where we introduced arithmetic
- +, -, <, >, etc are functors and expressions such as $2+3$ are actually ordinary complex terms
- The term $2+3$ is identical to the term $+(2,3)$
$?-2+3==+(2,3)$.
yes
?- $-(2,3)==2-3$.
yes
?- $(4<2)==<(4,2)$.
yes

Summary of comparison predicates

$=$	Unification predicate
$==$	Negation of unification predicate
$==$	Identity predicate
$==$	Negation of identity predicate
$=:=$	Arithmetic equality predicate
$==$	Negation of arithmetic equality predicate

Lists as terms

- Another example of Prolog working with one internal representation, while showing another to the user
- Using the \| constructor, there are many ways of writing the same list

$$
\begin{aligned}
& ?-[a, b, c, d]==[a \mid[b, c, d]] . \\
& \text { yes } \\
& ?-[a, b, c, d]==[a, b, c \mid[d]] . \\
& \text { yes } \\
& ?-[a, b, c, d]==[a, b, c, d \mid[]] . \\
& \text { yes } \\
& ?-[a, b, c, d]==[a, b \mid[c, d]] . \\
& \text { yes }
\end{aligned}
$$

Prolog lists internally

- Internally, lists are built out of two special terms:
- [] (which represents the empty list)
- '.' (a functor of arity 2 used to build non-empty lists)
- These two terms are also called list constructors
- A recursive definition shows how they construct lists

Definition of prolog list

- The empty list is the term []. It has length 0 .
- A non-empty list is any term of the form .(term,list), where term is any Prolog term, and list is any Prolog list. If list has length n, then .(term,list) has length $n+1$.

A few examples...

?- . $(\mathrm{a},[\mathrm{l})==[\mathrm{a}]$.
yes
?- . $(\mathrm{f}(\mathrm{d}, \mathrm{e}),[\mathrm{l})==[\mathrm{f}(\mathrm{d}, \mathrm{e})]$.
yes
?- . $(a, .(b,[]))==[a, b]$.
yes
?- . $(\mathrm{a}, .(\mathrm{b}, .(\mathrm{f}(\mathrm{d}, \mathrm{e}),[\mathrm{l})))==[\mathrm{a}, \mathrm{b}, \mathrm{f}(\mathrm{d}, \mathrm{e})]$.
yes

Internal list representation

- Works similar to the | notation:
- It represents a list in two parts
- Its first element, the head
- the rest of the list, the tail
- The trick is to read these terms as trees
- Internal nodes are labeled with .
- All nodes have two daughter nodes
- Subtree under left daughter is the head
- Subtree under right daughter is the tail

Example of a list as tree

- Example: [a,[b,c],d]

Examining terms

- We will now look at built-in predicates that let us examine Prolog terms more closely
- Predicates that determine the type of terms
- Predicates that tell us something about the internal structure of terms

Type of terms

Checking the type of a term

atom/1 integer/1
float/1 number/1 atomic/1
var/1 nonvar/1

Is the argument an atom?
... an integer?
... a floating point number?
... an integer or float?
... a constant?
... an uninstantiated variable?
... an instantiated variable or another term that is not an uninstantiated variable

Type checking: atom/1

?- atom(a).
yes
?- atom(7).
no
?- atom (X).
no

Type checking: atom/1

?- $\mathrm{X}=\mathrm{a}$, atom (X).
$X=a$
yes
?- $\operatorname{atom}(\mathrm{X}), \mathrm{X}=\mathrm{a}$.
no

Type checking: atomic/1

?- atomic(mia).
yes
?- atomic(5).
yes
?- atomic(loves(vincent,mia)).
no

Type checking: var/1

?- $\operatorname{var}(m i a)$.
no
?- $\operatorname{var}(\mathrm{X})$.
yes
?- $\mathrm{X}=5, \operatorname{var}(\mathrm{X})$.
no

Type checking: nonvar/1

?- nonvar(X).
no
?- nonvar(mia).
yes
?- nonvar(23).
yes

The structure of terms

- Given a complex term of unknown structure, what kind of information might we want to extract from it?
- Obviously:
- The functor
- The arity
- The argument
- Prolog provides built-in predicates to produce this information

The functor/3 predicate

- The functor/3 predicate gives the functor and arity of a complex predicate

The functor/3 predicate

- The functor/3 predicate gives the functor and arity of a complex predicate ?- functor(friends(lou,andy),F,A).

F = friends
$A=2$
yes

The functor/3 predicate

- The functor/3 predicate gives the functor and arity of a complex predicate ?- functor(friends(lou,andy),F,A).
$\mathrm{F}=$ friends
$\mathrm{A}=2$
yes
?- functor([lou,andy,vicky],F,A).
F = .
$\mathrm{A}=2$
yes

functor/3 and constants

- What happens when we use functor/3 with constants?

functor/3 and constants

- What happens when we use functor/3 with constants?
?- functor(mia,F,A).
F = mia
$\mathrm{A}=0$
yes

functor/3 and constants

- What happens when we use functor/3 with constants?
?- functor(mia,F,A).
$\mathrm{F}=\mathrm{mia}$
$\mathrm{A}=0$
yes
?- functor (14,F,A).
$\mathrm{F}=14$
$\mathrm{A}=0$
yes

functor/3 for constructing terms

- You can also use functor/3 to construct terms:
?- functor(Term,friends,2).
Term = friends(_,_)
yes

Checking for complex terms

complexTerm(X):nonvar(X), functor(X,_,A), A >0.

Arguments: arg/3

- Prolog also provides us with the predicate arg/3
- This predicate tells us about the arguments of complex terms
- It takes three arguments:
- A number N
- A complex term T
- The Nth argument of T

Arguments: arg/3

- Prolog also provides us with the predicate arg/3
- This predicate tells us about the arguments of complex terms
- It takes three arguments:
- A number N
- A complex term T
?- $\arg (2$, likes(lou,andy),A).
A = andy
- The Nth argument of T yes

Strings

- Strings are represented in Prolog by a list of character codes
- Prolog offers double quotes for an easy notation for strings
?-S = "Vicky".
S = [86,105,99,107,121]
yes

Working with strings

- There are several standard predicates for working with strings
- A particular useful one is atom_codes/2

> ?- atom_codes_(vicky,S).
> $S=[118,105,99,107,121]$
> yes

Operators

- As we have seen, in certain cases, Prolog allows us to use operator notations that are more user friendly
- Recall, for instance, the arithmetic expressions such as $2+2$ which internally means $+(2,2)$
- Prolog also has a mechanism to add your own operators

Properties of operators

- Infix operators
- Functors written between their arguments
- Examples: + - = == , ; -->
- Prefix operators
- Functors written before their argument
- Example: - (to represent negative numbers)
- Postfix operators
- Functors written after their argument
- Example: ++ in the C programming language

Precedence

- Every operator has a certain precedence to work out ambiguous expressions
- For instance, does $2+3 * 3$ mean $2+\left(3^{*} 3\right)$, or $(2+3)^{*} 3$?
- Because the precedence of + is greater than that of *, Prolog chooses + to be the main functor of $2+3 * 3$

Associativity

- Prolog uses associativity to disambiguate operators with the same precedence value
- Example: 2+3+4

Does this mean $(2+3)+4$ or $2+(3+4) ?$

- Left associative
- Right associative
- Operators can also be defined as nonassociative, in which case you are forced to use bracketing in ambiguous cases
- Examples in Prolog: :- -->

Defining operators

- Prolog lets you define your own operators
- Operator definitions look like this:
:- op(Precedence, Type, Name).
- Precedence: number between 0 and 1200
- Type: the type of operator

Types of operators in Prolog

- yfx left-associative, infix
- xfy
- xfx
- fx
- fy
- xf
- yf right-associative, infix non-associative, infix non-associative, prefix right-associative, prefix non-associative, postfix left-associative, postfix

Operators in SWI Prolog

1200	$x f x$	-->, :-
1200	$f x$: -, ?-
1150	$f x$	```dynamic, discontiguous, initialization, module_transparent, multifile, thread_local, volatile```
1100	$x f y$; 1
1050	$x f y$	$->, \mathrm{op} \star->$
1000	$x f y$,
954	$x f y$	\checkmark
900	$f y$	$\backslash+$
900	$f x$	~
700	$x f x$	$\begin{aligned} & <,=,=\ldots,=@=,=:=,=<,==,=\backslash=,>,>=, @<, @=<, @>, @>=, \\ & \backslash=, \backslash==, \text { is } \end{aligned}$
600	$x f y$	
500	$y f x$	$+,-, / \backslash, \backslash /$ xor
500	$f x$	+, -, ?, \}
400	$y f x$	*, /, //, rdiv,$\langle<, \gg$, mod, rem
200	$x f x$	**
200	$x f y$	\cdots

