
Constraint Logic Programming

Peter Stuckey 1

1

Chapter 10: CLP Systems

Where we examine how CLP systems
work and introduce an important
concept for constraint solvers:
incrementality

2

CLP Systems

 Simple Backtracking Goal Evaluation

 Incremental Constraint Solving

 Efficient Saving and Restoring of the
Constraint Store

 Implementing If-Then-Else, Once and
Negation

 Optimization

 Other Incremental Constraint Solvers

Constraint Logic Programming

Peter Stuckey 2

3

Backtracking Goal Evaln.

 Previously understood as depth-first left-
right search through a derivation tree

� Specific algorithm: simple_solve_goal
� parametric in solv and simpl
� uses defn(P,L) which returns rules defining L in

program P in the order they occur, renamed to not
contain any previous variables

� simple_solve_goal(G)
� return simpl(vars(G) , simple_backtrack(<G|true>})

4

simple_backtrack
� simple_backtrack(<G|C>)

� if G is empty return C
� let G be of the form L, G’
� case L is a primitive constraint

� if solv(C /\ L) = false return false
� return simple_backtrack(<G’ |C /\ L>)

� case L is an atom p(s1,...,sn)
� foreach p(t1,...,tn) :- B in defn(P,L)

� C1 = simple_backtrack(<s1=t1,..,sn=tn,B,G’ |C>)
� if C1 != false return C1

� return false

Constraint Logic Programming

Peter Stuckey 3

5

Example execution sum(1,S)
(S1) sum(0,0).

(S2) sum(N,N+S) :- sum(N-1,S).

simple_backtrack(<sum(1,S) | true>)

simple_backtrack(<1=0,S=0 | true>) rule S1
returns false

simple_backtrack(<1=N’,S=N’+S’,sum(N’ -1,S’) |true>) rule S2
simple_backtrack(<S=N’+S’,sum(N’ -1,S’) | 1=N’>)

simple_backtrack(<sum(N’-1,S’)| 1=N’ / \ S=N’+S’ >)
simple_backtrack(<N’-1=0,S’=0 | 1=N’ / \ S=N’+S’ >) rule S1

simple_backtrack(<S’=0 | 1=N’ / \ S=N’+S’ / \ N’-1=0 >)
simple_backtrack(<[] | 1=N’ / \ S=N’+S’ / \ N’-1=0/\S’=0>)
returns 1=N’ / \ S=N’+S’ / \ N’-1=0 /\ S’=0

simpl({S},1=N’ / \ S=N’+S’ / \ N’-1=0 /\ S’=0) = S = 1

6

Incremental Solving

 The simple backtracking evaluation is
inefficient, consider calls to solv

� solv(1=0)
� solv(1 = N’)
� solv(1= N’ / \ S = N + S’)
� solv(1= N’ / \ S = N + S’ / \ N’-1 = 0)
� solv(1= N’ / \ S = N + S’ / \ N’-1 = 0 /\ S’ = 0)

 Repeated work

Constraint Logic Programming

Peter Stuckey 4

7

Incremental Constraint Solver

 An incremental constraint solver is a
function isolv which takes a primitive
constraint c and returns true, false or
unknown. There is an implicit constraint
store S

� if isolv(c) = true then S /\ c is satisfiable
� if isolv(c) = false then S /\ c is unsatisfiable
� if isolv(c) != false then store is updated to S /\ c

8

Incremental Gauss-Jordan
 inc_gj(c)

� c := eliminate(c, S)
� if c is of the form 0 = 0 return true
� if c is of the form d = 0 (d != 0) return false
� rewrite c in the form x = e
� S := eliminate(S, x = e) /\ x = e
� return true

 eliminate(C,x1 = e1 /\ ... /\ xn = en)
� foreach xi

� replace xi by ei throughout C
� return C

Constraint Logic Programming

Peter Stuckey 5

9

Incremental GJ Example

Solving 1= N’ / \ S = N + S’ / \ N’-1 = 0 /\ S’ = 0

S c c S

true N =N'

N S N S S S

N S S N

N S S S S

N S S

eliminate(,)

'

' ' ' '

' ' '

' ' ' '

' '

1 1

1 1

1 1 1 0 0 0

1 1 0 0

1 1 0

=
= = + = +

= ∧ = + − = =
= ∧ = + = =

= ∧ = ∧ =

isolv(N’=1)

isolv(S=N’+S’)

isolv(N’-1 = 0)

isolv(S’ = 0)

10

Incremental goal solver

 CLP systems use a global constraint store S
and incremental solvers

 inc_backtrack similar to simple_backtrack
� uses incremental solver
� store is not part of argument
� functions: save_store, restore_store for saving

and restoring the implicit store

Constraint Logic Programming

Peter Stuckey 6

11

inc_backtrack
� inc_backtrack(G)

� if G is empty return true
� let G be of the form L, G’
� case L is a primitive constraint

� if isolv(L) = false return false
� return inc_backtrack(G’)

� case L is an atom p(s1,...,sn)
� foreach p(t1,...,tn) :- B in defn(P,L)

� save_store()
� if inc_backtrack(s1=t1,..,sn=tn,B,G’) then

� return C1
� restore_store()

� return false

12

inc_solve_goal

 The incremental goal solving algorithm,
making use of auxiliary functions to
initialize and get the constraint store

 inc_solve_goal(G)
� W := vars(G)
� initialize_store()
� if inc_backtrack(G) then

� return simpl(W, get_store())
� return false

Constraint Logic Programming

Peter Stuckey 7

13

Example execution sum(1,S)

inc_backtrack(sum(1,S))

inc_backtrack(1=0, S = 0)

return false

inc_backtrack(1=N’, S = N’ + S’, sum(N’ -1, S’))

inc_backtrack(S = N’ + S’, sum(N’ -1, S’))

inc_backtrack(sum(N’-1, S’))

inc_backtrack(N’-1 = 0, S’ = 0)

inc_backtrack(S’ = 0)

inc_backtrack([])

simpl({S}, N’ = 1 / \ S = 1 /\ S’ = 0) = S = 1

constraint store stack

<empty>

true |

<empty>

true |

true |

true |

true| N’ = 1 / \ S = 1 + S’|

true| N’ = 1 / \ S = 1 + S’|

true| N’ = 1 / \ S = 1 + S’|

14

Efficient saving and restoring

 Incremental solver requires saving/restoring
the constraint store

 Dont need to save the entire store

 Save enough information to recreate store
� Trailing: save modified parts of the constraint

store in a trail and recover on backtracking
� Semantic backtracking: store operations

necessary to recover store

Constraint Logic Programming

Peter Stuckey 8

15

Trailing

 Associate a timestamp with each primitive
constraint

 At a choicepoint
� store the current timestamp

 Backtracking
� remove all constraints with a later stamp

 Doesnt handle when an old primitive
constraint is modified

16

Trailing

 Whenever an old constraint (from before
the last choicepoint) is modified

� save the old value in the trail

 Note we dont have to trail the same
constraint again if it is modified again
before another choicepoint

Constraint Logic Programming

Peter Stuckey 9

17

Trailing Gauss-Jordan

 Index each equation by arrival number

 Choicepoint saves:
� index of last equation, last
� trail of changes (initially empty)

 Whenever equation i is modified, if i <= last
then each modified coefficient is added to
trail <i,x,a> or <i,constant,b>

18

Semantic Backtracking

 Save high-level operations of how to restore
the constraint store (domain dependent)

 For Gauss-Jordan
� a new constraint only eliminates a variable x
� remember the old coefficients of x and
� undo the elimination on backtracking

Constraint Logic Programming

Peter Stuckey 10

19

Semantic Backtracking Ex.

Imagine store is
1 2 4

2 3 1

3 3

:

:

:

X Y Z

U Y Z

V

= + +
= + −
=

Adding constraint Y V X+ + =2 2

Eliminatevars Y Z= − − 4

Eliminate Y using
equation and add.
Remember coefs

1

2 2 13

3 3

4 4

:

:

:

:

X Z

U Z

V

Y Z

=
= − −
=
= − −[, , , , ,]1 1 2 3Y Y

Removing
constraint

Add coefficient
* (Y+Z+4) to
eqns1,2 and
remove 4
1 2 4

2 3 1

3 3

:

:

:

X Y Z

U Y Z

V

= + +
= + −
=

20

Extra Constructs

 So far “pure” programs (Chapter 4)

 Chapters 7 and 9 introduce
� if-then-else
� once
� negation
� optimization

 How are they implemented?

Constraint Logic Programming

Peter Stuckey 11

21

If-Then-Else,Once+Negation

 All three are implemented using a single
construct, the cut, written !

 Cut prunes derivations from a tree
� when reached: commit to this clause and

remove any choices set up within this clause

 Very powerful, and dangerous

 Preferable to use if-then-else, once or
negation rather than the lower level cut

22

Cut Example

sum(N,SS) :-

(N = 0 ->
SS = 0

;
N >= 1, SS = N + S,
sum(N-1,S)

).

Sum program for mode of usage: first arg fixed

Equivalent version with cut
sum(N,SS) :- N = 0, !, SS = 0.

sum(N,SS) :- N >= 1, SS = N + S,
sum(N-1, S).

Constraint Logic Programming

Peter Stuckey 12

23

Cut Derivation Tree
<sum(1,S) | true >

<sum(0,S’) | S = 1+S’ >< [] | false >

<!, S’ = 0 | S = 1 + S’ >

< S’ = 0 | S = 1 + S’ >

< [] | S = 1 >

SC1 SC2

SC1 SC2

When ! reached,
other choices are
pruned away

24

Cut

 Cut commits to all choices made since when
the atom which was rewritten that
introduced the cut

 Assume rewriting atom A’ using rule
� A :- L1, ..., Li, !, Li+1, ..., Ln

 When ! reached all choices for rewriting A’
and all choices in evaluation L1, ..., Li are
removed

Constraint Logic Programming

Peter Stuckey 13

25

Implementing Cut

 Need save_store to return an index of the
last store

 remove_choicepoints(i) removes all
choicepoints with indexes >= i

 simply modify inc_backtrack for case
introducing a cut

26

Modifying inc_backtrack
� case L is an atom p(s1,...,sn)

� foreach p(t1,...,tn) :- L1,...,Ln in defn(P,L)
� i := save_store()
� if some Lj = ! then

� if inc_backtrack(s1=t1,..,sn=tn,L1,...,Lj-1) then
� remove_choicepoints(i)
� return inc_backtrack(Lj+1,...,Ln,G’)

� elseif inc_backtrack(s1=t1,..,sn=tn,,G’) then
� return true

� restore_store()
� return false

Constraint Logic Programming

Peter Stuckey 14

27

Cut Example 2

h(X):- X > 0,p(X),q(X).

h(4).
p(X) :-X < 4, r(X),!.
p(3).
r(1).
r(2).
q(2),
q(3).

< h(X) | true >

< p(X),q(X) | X>0 >

< r(X),!,q(X) | X>0 /\ X < 4 >

< !,q(X) | X=1 >

< q(X) | X=1 >

< [] | false > < [] | false >

< [] | X = 4 >

28

Cut Example 2

inc_backtrack(h(X))

inc_backtrack(X > 0, p(X), q(X))

inc_backtrack(p(X), q(X))

inc_backtrack(X < 4, r(X)) (before cut)

inc_backtrack(r(X))

return true

inc_backtrack(q(X)) (after cut)

return false

return false

inc_backtrack(X = 4)

return true

constraint storestack

<empty>

true |

index 2 true | X > 0 |

true | X > 0 |

true | X > 0 | X > 0 /\ X < 4 |

remove upto 2 true |

true| X = 1 |

restore 2 true |

restore 1 <empty>

true|
Answer: X = 4

Constraint Logic Programming

Peter Stuckey 15

29

If-Then-Else,Once+Negation

once(G) :- call(G), !.

not(G) :- call(G)!, !, fail.

not(G).

G1 -> G2 ; G3 :- call(G1), !, call(G2).

G1 -> G2 ; G3 :- call(G3).

All are implemented using the meta-programming
facilities and the cut.

30

Optimization

 Implementing minimize(G,E)
� minimize_store(E): returns the minimal value

of E wrt to current constraint store
� search the derivation tree of G and collect

minimum value m of E, then execute E = m, G

 Multiple approaches to search
� retry search (restart after finding soln)
� backtrack search (continue after finding)

Constraint Logic Programming

Peter Stuckey 16

31

Retry Optimization
� case L is minimization literal minimize(G,E)

� i := save_store()
� m := +
� while inc_backtrack(E < m, G) do

� m := minimize_store(E)
� remove_choicepoints(i+1)
� restore_store()
� i := save_store()

� restore_store()
� return inc_backtrack(E = m, G, G’)

∞

32

Retry Example
Evaluating minimize(butterfly(S,P), -P)

inc_backtrack(-P < + , butterfly(S,P))
answer: -P < + /\ P = -100 /\ 0 <= S <= 1
m := 100

inc_backtrack(-P < 100 , butterfly(S,P))
answer: -P < 100 /\ P = 100S - 200 /\ 1 <= S <= 3
m := -100

inc_backtrack(-P < -100, butterfly(S,P))
returns false

inc_backtrack(-P = -100, butterfly(S,P))
answers: P = 100 /\ S = 3 (twice)

∞
∞

Constraint Logic Programming

Peter Stuckey 17

33

Backtracking Optimization

� minimize(G,E)

 Search the derivation tree for G

 At each success update the minimal value m
of E found (handled by a catch literal)

 Then execute E=m,G

34

Backtracking Optimization

� case L is minimization literal minimize(G,E)
� i := save_store()
� m := +
� inc_backtrack(G, catch(m,E))
� restore_store(i)
� return inc_backtrack(E=m,G,G’)

� case L is a catch subgoal catch(m,E)
� if isolv(E < m) != false then

� m := minimize_store(E)
� return false

∞

Constraint Logic Programming

Peter Stuckey 18

35

Backtracking Example
inc_backtrack(butterfly(S,P),catch(+ ,-P))

inc_backtrack(catch(+ ,-P))
store: P = -100 /\ 0 <= S <= 1 sets m := 100

inc_backtrack(catch(100,-P))
store: P = 100S - 200 /\ 1 <= S <= 3 sets m := -100

inc_backtrack(catch(-100,-P))
store: P = -100S +400 /\ 3 <= S <= 5
isolv(-P < -100) fails no update

inc_backtrack(catch(100,-P))
store: P = -100 S >= 5 fails no update

inc_backtrack(-P = -100, butterfly(S,P))
answers: P = 100 /\ S = 3 (twice)

36

Other Incremental Solvers

 Incremental Tree Solving
� Use the store to eliminate variables and solve

remainder as before, then use it to eliminate
� inc_tree_solve(c)

� c := eliminate(c, S)
� R := unify(c)
� if R = false then return false
� S := eliminate(S,R) /\ R
� return true

Constraint Logic Programming

Peter Stuckey 19

37

Incremental Tree Solving Ex.

Constraints collected by goal append([a],[b,c],L)

[a] = [F|R], [b,c] = Y, L = [F|Z], R = [], Y = Z

c S c c

a F R true a F R F a R

b c Y F a R b c Y Y b c

L F Z F a R Y b c L a Z L a Z

R F a R Y b c L a Z true

Y Z F a R Y b c L a

elim unify()()

[] [|] [] [|] []

[,] [] [,] [,]

[|] [] [,] [|] [|]

[] [] [,] [|] [] []

[] [,] [

= = = ∧ =
= = ∧ = = =

= = ∧ = ∧ = = =
= = ∧ = ∧ = ∧ = =
= = ∧ = ∧ = ∧ = |] [,] [,]

[] [,] [, ,] [,]

Z b c Z Z b c

F a R Y b c L a b c Z b c

= =
= ∧ = ∧ = ∧ = ∧ =

38

Data Structures for Trees

 Tree constraints are stored/manipulated as
dynamic data structures

� variable: unique memory cell (pointer)
� unconstrained: self-pointer
� equated to term: pointer at term rep

� term f(t1,...,tn): n+1 memory cells
� first: constructor info f/n
� rest: pointers to t1,...,tn

� optimization: store subtrees with no children
directly

Constraint Logic Programming

Peter Stuckey 20

39

Data Structures for Trees

Handling the equation f(a,W) = f(a,V)

f/2 a

W:

f/2 a

V:

Match constructor/arities and each arg. Eqn W = V binds W to V

f/2 a

W:

f/2 a

V:

40

Data Structures for Trees

f/2 a

W:

f/2 a

V:

Incrementally adding g(W) = g(g(a))

g/1

g/1 a

g/1

Represents solved form: V = g(a) /\ W = g(a)

Constraint Logic Programming

Peter Stuckey 21

41

Occurs Check Revisited

 Most implementations ignore the occurs
check!

 Problems: e.g. Y = g(Y)

 Builds cyclic structures

 Infinite computation

 e.g. Y = g(Y), Z = g(Z), Y = Z

g/1

Y:

42

Incremental Bounds Cons.

 Propagation is essentially incremental

 incremental bounds consistency:
� Add new prim. constraint to store and queue
� Pick prim. constraint from queue
� Enforce its bounds consistency
� Add prim. constraint with modified variables to

queue
� Repeat until queue is empty, or empty domain

Constraint Logic Programming

Peter Stuckey 22

43

Incremental Bounds Ex.

Add first constraint

Smugglers knapsack, no whiskey

Add second constraint

capacity profit

W P C W P C4 3 2 9 15 10 7 30+ + ≤ ∧ + + ≥

D W D P D C() [..], () [..], () [..]= = =0 0 1 3 0 4D W D P D C() [..], () [..], () [..]= = =0 0 1 3 0 3

44

CLP Systems Summary

 Incremental constraint solving
� essential for efficiency

 Global constraint store
� require efficient save and restore

 The Cut!
� implements if-then-else, once + negation

 Minimization
� many possible implementations

